Ultra-thin Carbon Fiber Composites: Constitutive Modeling and Applications to Deployable Structures

Lectures 1-2

Sergio Pellegrino California Institute of Technology sergiop@caltech.edu

Outline

- Applications and examples of ultra-thin composites
- Composites made from single-ply triaxial weave fabric
- Elastic constitutive model

Applications of Ultra-thin Composites in Deployable Structures

Self-motorized deployment mechanism Boesch et al. (2008)

Ultra lightweight deployable **CFRP** boom (DLR)

Flattenable Foldable Tube (Astro Aerospace)

Applications of Ultra-thin Composites in Deployable Structures

(courtesy of EADS-ST)

 Rigid reflector made of carbon fiber Triaxial Weave Fabric sandwich

Boeing Springback Reflector

- Monolithic structure, mainly single ply triaxial CFRP.
- Folded elastically, deployed dynamically.
- Geometric accuracy issues.

Stiffened Spring Back Reflector

0.8 m diameter demonstrator

Background to Triaxial Weave Fabric

- Invented by Norris Dow (patented in 1969) working with Francis Rogallo on a paraglider for a reentry vehicle from Mercury.
- A model of the paraglider, made of biaxial weave fabric became badly distorted during a test in the Langley wind tunnel
- Dow founded N.F. Doweave, Inc.

Triaxial Weave Fabrics from Sakase

Style No.	Warp	Weight g/m ²	Thickness mm	Density g/cm ³
SK - 702	K 2200dtex	239	0.50	0.48
SK - 801	T300 3K	223	0.37	0.60
SK - 802	T300 1K	74	0.13	0.57
SK - 809	M46JB 1K	41	0.09	0.49
SK - 8801	UHMS-G 3K	98	0.18	0.54
SK - 906	YS-50A 1.5K	152	0.22	0.68
SK - 907	YSH-50A 1K	85	0.13	0.64
SK - 909	YSH-60A 1K	88	0.15	0.59
SK - 910	YSH-70A 1K	79	0.14	0.59
SK - 920	YT-50A 1K	70	0.12	0.59

Triaxial Weave Fabric (TWF)

- Three weave directions (basic weave)
- Hexagonal holes cover about 50% of total area
- Comes on a roll

Material Processing

- To minimize voids the composite is placed in a vacuum bag and cured in an autoclave under high pressure.
- Main production steps:
- SK-802 fabric is laid on release fabric; a single layer of semisolid Hexcel 8552 resin film is placed on the fabric and the fabric is impregnated with the resin using a warm iron.
- This lay-up is sealed in a vacuum bag and it is then heated to a temperature of 110 °C under a pressure of 6 bar for 1 hour in an autoclave, to allow the resin to melt and seep through the fibres by capillarity, before it hardens.
- The lay-up is cured at a temperature of 185 °C and a pressure of 6 bar for 2 hours.

Single-Ply Triaxial Weave Composite

- Sakase SK802 cloth, 1k T300 tows
- Hexcel 8225 epoxy resin, cured at 185 °C
- Areal mass 105 g/m²
- Overall thickness 0.14 mm
- Fibre volume fraction 0.65 (tows only)

Microstructure

• A *grillage* of transversally isotropic "planks"

 Cross-section twists back and forth a few degrees, but effect on constitutive behaviour is small

Volume Fractions

- Volume fractions of fibres and resin are defined with respect to the total volume of composite material, excluding the voids in the weave.
- Volume fraction of fibres is defined as

 $V_f = \frac{\text{Vol. fibres}}{\text{Vol. fibres} + \text{Vol. matrix}}$

- It can be computed from $V_f = \frac{\rho_m W_f}{\rho_m W_f + \rho_f W_m}$
 - W_m = weight per unit area of resin film
 - W_f = weight per unit area of dry fabric
 - $\rho_m = \text{density of resin}$
 - $\rho_f = \text{density of dry fibres}$
- Then the volume fraction of matrix can be computed from

$$V_m = 1 - V_f$$

Volume Fractions

- Volume fractions of fibres and resin are defined with respect to the total volume of composite material, excluding the voids in the weave.
- Volume fraction of fibres is defined as

 $V_f = \frac{\text{Vol. fibres}}{\text{Vol. fibres} + \text{Vol. matrix}}$

• It can be computed from $V_f = \frac{\rho_m W_f}{\rho_m W_f + \rho_f W_m}$ burning the main burning t

W_m can be measured by chemically dissolving or burning the matrix in a cured tow.

- W_m = weight per unit area of resin film
- W_f = weight per unit area of dry fabric
- $\rho_m = \text{density of resin}$
- $\rho_f = \text{density of dry fibres}$
- Then the volume fraction of matrix can be computed from

$$V_m = 1 - V_f$$

Properties of Constituent Material

	Fibre	Matrix
Type of material	T300	Hexcel 8552
Density, ρ [kg/m ³]	1,760	1,301
Longitudinal stiffness, E ₁ [MPa]	233,000	4,760
Transverse stiffness, E ₂ [MPa]	23,100	4,760
Shear stiffness, G ₁₂ [MPa]	8,963	1,704
Poisson's ratio, v ₁₂	0.20	0.37
Longitudinal CTE, α ₁ [/ºC]	-0.54 x 10 ⁻⁶	65.0 x 10 ⁻⁶
Transverse CTE, α ₂ [/ºC]	10.08 x 10 ⁻⁶	65.0 x 10 ⁻⁶
Failure strain [%]	1.5	1.7

Geometric Properties of Cured Tows

- Average tow cross-sectional area (measured from micrographs with Autocad is A_t=0.0626mm²
- Maximum thickness of composite (from micrographs) 0.156 mm
- Tow models with rectangular cross section assume width of 0.803 mm and height of 0.078 mm
- Weight of fabric $W_f = 75 \text{ g/m}^2$
- Weight of matrix $W_m = 29.5 \text{ g/m}^2$
- Weight of cured composite $W_c = 104.5 \text{ g/m}^2$
- Fibre volume fraction 0.65

Elastic Properties of Tows

- Each tow is a three-dimensional continuum with transversely isotropic properties; the modulus in the fibre direction is higher than the transverse modulus.
- Let 1 be the direction along the tow axis
- The number of independent elastic constants needed to model a transversely isotropic solid is five:
 - longitudinal stiffness, E_1 ,
 - transverse stiffness, E_2 ,
 - Iongitudinal Poisson's ratio, v_{12} , and
 - shear moduli, G_{12} and G_{23} .

Extensional Moduli and Poisson's ratios

• E_1 and v_{12} are obtained from the rule of mixtures

$$E_1 = E_{1f}V_f + E_m(1 - V_f)$$
$$\nu_{12} = \nu_{13} = \nu_{12f}V_f + \nu_m(1 - V_f)$$

• E₂ is obtained from the Halpin-Tsai semi-empirical relation

$$E_{2} = E_{3} = E_{m} \frac{1 + \xi \eta V_{f}}{1 - \eta V_{f}}$$

 $\eta = \frac{E_{2f} - E_m}{E_{2f} + \xi E_m}$

where

and ξ depends is a measure of reinforcement of the composite that depends on the fibre geometry, packing geometry, and loading conditions. Following Daniel, we have taken $\xi = 2$

Shear Moduli

• $G_{12} = G_{13}$ is found from the Halpin-Tsai semi-empirical relation

$$G_{12} = G_{13} = G_m \frac{(G_{12f} + G_m) + V_f(G_{12f} - G_m)}{(G_{12f} + G_m) - V_f(G_{12f} - G_m)}$$

• G₂₃ is obtained by solving the quadratic equation

$$\left(\frac{G_{23}}{G_m}\right)^2 A + \left(\frac{G_{23}}{G_m}\right) B + C = 0$$

where

$$A = 3V_f (1 - V_f)^2 \left(\frac{G_{12f}}{G_m} - 1\right) \left(\frac{G_{12f}}{G_m} + \zeta_f\right) \\ + \left[\left(\frac{G_{12f}}{G_m}\right)\zeta_m + \zeta_m\zeta_f - \left(\left(\frac{G_{12f}}{G_m}\right)\zeta_m - \zeta_f\right)(V_f)^3\right] \\ \times \left[\zeta_m V_f \left(\frac{G_{12f}}{G_m} - 1\right) - \left(\left(\frac{G_{12f}}{G_m}\right)\zeta_m + 1\right)\right]$$

$$\zeta_m = 3 - 4\nu_m$$

 $\zeta_f = 3 - 4\nu_{12f}$ **Contd.**

$$B = -6V_f (1 - V_f)^2 \left(\frac{G_{12f}}{G_m} - 1\right) \left(\frac{G_{12f}}{G_m} + \zeta_f\right) + \left[\left(\frac{G_{12f}}{G_m}\right) \zeta_m + \left(\frac{G_{12f}}{G_m} - 1\right) V_f + 1\right] \times \left[(\zeta_m - 1) \left(\frac{G_{12f}}{G_m} + \zeta_f\right) - 2(V_f)^3 \left(\left(\frac{G_{12f}}{G_m}\right) \zeta_m - \zeta_f\right)\right] + (\zeta_m + 1) V_f \left(\frac{G_{12f}}{G_m} - 1\right) \left[\frac{G_{12f}}{G_m} + \zeta_f + \left(\left(\frac{G_{12f}}{G_m}\right) \zeta_m - \zeta_f\right) (V_f)^3\right] C = 3V_f (1 - V_f)^2 \left(\frac{G_{12f}}{G_m} - 1\right) \left(\frac{G_{12f}}{G_m} + \zeta_f\right) + \left[\left(\frac{G_{12f}}{G_m}\right) \zeta_m + \left(\frac{G_{12f}}{G_m} - 1\right) V_f + 1\right] \times \left[\frac{G_{12f}}{G_m} + \zeta_f + \left(\left(\frac{G_{12f}}{G_m}\right) \zeta_m - \zeta_f\right) (V_f)^3\right]$$

Cured Tow Properties

Property	Value
Longitudinal stiffness, E ₁ [N/mm ²]	153,085
Transverse stiffness, $E_2 = E_3 [N/mm^2]$	12,873
Shear stiffness, G ₁₂ =G ₁₃ [N/mm ²]	4,408
In-plane shear stiffness, G ₂₃ [N/mm ²]	4,384
Poisson's ratio, $v_{12}=v_{13}$	0.260

3-fold Symmetric Unit Cells

D'Amato, E. (2001), Finite element modelling of textile composites, Composite Structures, 54, 467-475.

Aoki, T., and Yoshida, K. (2006), Mechanical and thermal behaviors of triaxially-woven carbon /epoxy fabric composite, AIAA-2006-1688.

Zhao, Q., and Hoa, S.V. (2003), Triaxial woven fabric (TWF) composites with open holes (Part I): Finite element models for analysis, Journal of Composite Materials, 37, 763-789.

- Plot shows change in normalized stiffness (ratio between stiffness of finite width specimen and that of infinitely wide specimen) vs. reciprocal of specimen width.
- In general, the stiffness is inversely proportional to the width of the specimen, but the variation is much larger when the tows are perpendicular to the direction of loading.
- In pure bending there are similar trends but the stiffness reduction of narrow samples is typically less than 1%