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Outline

• Applications and examples of ultra-thin composites
• Composites made from single-ply triaxial weave fabric
• Elastic constitutive model



Applications of Ultra-thin Composites in 
Deployable Structures

Self‐motorized deployment mechanism Boesch
et al. (2008)

Flattenable Foldable  Tube 
(Astro Aerospace)

Ultra lightweight  
deployable 
CFRP boom 
(DLR)



Applications of Ultra-thin Composites in 
Deployable Structures

• Rigid reflector made of carbon fiber Triaxial Weave 
Fabric sandwich

(courtesy of EADS‐ST)



Boeing Springback Reflector

• Monolithic structure, mainly single 
ply triaxial CFRP .

• Folded elastically, deployed 
dynamically.

• Geometric accuracy issues.



Stiffened Spring Back Reflector

0.8 m diameter demonstrator



Background to Triaxial Weave Fabric

• Invented by Norris Dow (patented in 1969) working with 
Francis Rogallo on a paraglider for a reentry vehicle 
from Mercury.

• A model of the paraglider, made of biaxial weave fabric 
became badly distorted during a test in the Langley 
wind tunnel

• Dow founded N.F. Doweave, Inc.



Triaxial Weave Fabrics from Sakase

Style No. Warp Weight g/m2 Thickness mm Density g/cm3

SK - 702 K 2200dtex 239 0.50 0.48 

SK - 801 T300 3K 223 0.37 0.60 

SK - 802 T300 1K 74 0.13 0.57 

SK - 809 M46JB 1K 41 0.09 0.49 

SK - 8801 UHMS-G 3K 98 0.18 0.54 

SK - 906 YS-50A 1.5K 152 0.22 0.68 

SK - 907 YSH-50A 1K 85 0.13 0.64 

SK - 909 YSH-60A 1K 88 0.15 0.59 

SK - 910 YSH-70A 1K 79 0.14 0.59 

SK - 920 YT-50A 1K 70 0.12 0.59 



Triaxial Weave Fabric (TWF)

• Three weave directions (basic weave)
• Hexagonal holes cover about 50% of total area
• Comes on a roll



Material Processing

• To minimize voids the composite is placed in a vacuum bag 
and cured in an autoclave under high pressure.

• Main production steps:
• SK-802 fabric is laid on release fabric; a single layer of semi-

solid Hexcel 8552 resin film is placed on the fabric  and the 
fabric is impregnated with the resin using a warm iron. 

• This lay-up is sealed in a vacuum bag and it is then heated to 
a temperature of 110 oC under a pressure of 6 bar for 1 hour 
in an autoclave, to allow the resin to melt and seep through 
the fibres by capillarity, before it hardens. 

• The lay-up is cured at a temperature of 185 oC and a pressure 
of 6 bar for 2 hours. 



Single-Ply Triaxial Weave Composite

• Sakase SK802  cloth, 1k T300 tows
• Hexcel 8225 epoxy resin, cured at 185 oC
• Areal mass 105 g/m2

• Overall thickness 0.14 mm
• Fibre volume fraction 0.65 (tows only)

(units: mm)



Microstructure

• A grillage of transversally 
isotropic “planks”

• Average tow thickness 
0.07 mm.

• Cross-section twists back and forth a few degrees, but 
effect on constitutive behaviour is small



Volume Fractions
• Volume fractions of fibres and resin are defined  with respect to the 

total volume of composite material, excluding the voids in the 
weave.

• Volume fraction of fibres is defined as 

• It can be computed from

• Then the volume fraction of matrix can be computed from 



Volume Fractions
• Volume fractions of fibres and resin are defined  with respect to the 

total volume of composite material, excluding the voids in the 
weave.

• Volume fraction of fibres is defined as 

• It can be computed from

• Then the volume fraction of matrix can be computed from 

Wm can be 
measured by 
chemically 
dissolving or 
burning the matrix 
in a cured tow. 



Properties of Constituent Material 

Fibre Matrix
Type of material T300 Hexcel 8552
Density, ρ [ kg/m3 ] 1,760 1,301
Longitudinal stiffness, E1 [ MPa ] 233,000 4,760
Transverse stiffness, E2 [ MPa ] 23,100 4,760
Shear stiffness, G12 [ MPa ] 8,963 1,704
Poisson's ratio, ν12 0.20 0.37
Longitudinal CTE, α1 [/oC] -0.54 x 10-6 65.0 x 10-6

Transverse CTE, α2 [/oC] 10.08 x 10-6 65.0 x 10-6

Failure strain [%] 1.5 1.7



Geometric Properties of Cured Tows

• Average tow cross-sectional area (measured from micrographs with 
Autocad is At=0.0626mm2

• Maximum thickness of composite (from micrographs) 0.156 mm
• Tow models with rectangular cross section assume width of 0.803 

mm and height of 0.078 mm

• Weight of fabric Wf=75 g/m2

• Weight of matrix Wm=29.5 g/m2

• Weight of cured composite Wc=104.5 g/m2

• Fibre volume fraction 0.65

1 mm



Elastic Properties of Tows

• Each tow is a three-dimensional continuum with 
transversely isotropic properties; the modulus in the fibre 
direction is higher than the transverse modulus. 

• Let 1 be the direction along the tow axis
• The number of independent elastic constants needed to 

model a transversely isotropic solid is five: 
– longitudinal stiffness, E1,
– transverse stiffness, E2 , 
– longitudinal Poisson's ratio, ν12, and 
– shear moduli, G12 and G23. 



Extensional Moduli and Poisson’s ratios

• E1 and ν12 are obtained from the rule of mixtures

• E2 is obtained from the Halpin-Tsai semi-empirical relation

where 

and ξ depends is a measure of reinforcement of the composite 
that depends on the fibre geometry, packing geometry, and 
loading conditions. Following Daniel, we have taken ξ = 2



Shear Moduli

• G12 = G13 is found from the Halpin-Tsai semi-empirical relation

• G23 is obtained by solving the quadratic equation

where 



contd. 



Cured Tow Properties

Property Value 

Longitudinal stiffness,  E1 [N/mm2] 153,085  

Transverse stiffness, E2=E3 [N/mm2] 12,873  

Shear stiffness, G12=G13 [N/mm2] 4,408  

In-plane shear stiffness, G23 [N/mm2] 4,384  

Poisson’s ratio, ν12=ν13 0.260  



3-fold Symmetric Unit Cells 

• Unit cells from literature

D'Amato, E. (2001), Finite element 
modelling of textile composites, 
Composite Structures, 54, 467-475.

Zhao, Q., and Hoa, S.V. (2003), Triaxial
woven fabric (TWF) composites with open 
holes (Part I): Finite element models for 
analysis, Journal of Composite Materials, 
37, 763-789.

Aoki, T., and  Yoshida, K. (2006), 
Mechanical and thermal behaviors of 
triaxially-woven carbon /epoxy fabric 
composite, AIAA-2006-1688.



Edge Effects

• Plot shows change in normalized stiffness (ratio between stiffness of  
finite width specimen and that of infinitely wide specimen) vs. 
reciprocal of specimen width.

• In general, the stiffness is inversely proportional to the width of the 
specimen, but the variation is much larger when the tows are 
perpendicular to the direction of loading. 

• In pure bending there are similar trends  but the stiffness reduction 
of narrow samples is typically less than 1%

From:
Aoki, T., and  
Yoshida, K. 
(2006)
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